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Abstract: Proportionate fair (Pfair ) scheduling, which allows
task migration at runtime and assigns each task processing
time with regard to its weight, is one of the most efficient
group of SMP multiprocessor scheduling algorithms known
up to now. Drawbacks are tight requirements to the task
system, namely the restriction to periodic task systems with
synchronized task activation, quantized task execution time,
and implicit task deadline. Most likely, a typical embedded
real-time system does not fulfill these requirements.
In this paper we address violations of these requirements.
For heterogeneous task systems, we define the multiple
time base (MTB) task system, which is a less pessimistic
model than sporadic task systems and is used for automotive
systems. We apply the concept of Pfair scheduling to MTB
task systems, called partly proportionate fair (Partly-Pfair )
scheduling. The restrictions on MTB task systems required
for Partly-Pfairness are weaker than restrictions on periodic
task systems required for Pfairness.
In a simulation based study we examined the performance
of Partly-Pfair-PD2 and found it capable to schedule feasible
MTB task sets causing a load of up to 100% of the system
capacity.

Keywords: Real-time systems, multiprocessors, dynamic
scheduling, proportionate fairness, Pfair , PD2

I. Introduction

Scheduling a task set1 � = {Ti} (i = 1, ..., n; n ∈ ℕ),
with independent and hard real-time constrained tasks
Ti, on a multiprocessor M = {Px} (x = 1, ...,m; m ∈ ℕ)
with m identical processing resources Px, has been
widely studied in the last two decades. Scheduling
algorithms for these systems can be classified in two
groups.
One group consists of algorithms using the partitioning
scheduling approach, which allocates tasks before run-
time. The benefit of this approach is that the scheduling
problem can be treated like in uniprocessor systems,
using well studied algorithms like Earliest Deadline
First (EDF) or Rate Monotonic (RM) [1] together with
partitioning heuristics, e.g. bin-packing variants [2], [3],
applied before runtime. Drawback of the partitioning

1A task set is the description of timing relevant embedded software
properties and has to fulfill the restrictions given by the underlying
task system.

approach is a low maximal system utilization [4].
The other group consists of algorithms using the dy-
namic scheduling approach, which allocates tasks dur-
ing runtime. Proportionate fair (Pfair ) Scheduling [5]
is a mechanism of dynamic scheduling, known to be
optimal2 for algorithms like PF [5] or PD2 [7]. Using tight
restrictions on task systems, it is theoretically possible
to fulfill all deadlines up to 100% system utilization.
These restrictions are:

∙ a periodic task activation in discrete time3

∙ a synchronous task activation
∙ a constant task execution time in discrete time
∙ an implicit deadline in discrete time

Embedded Systems, particular automotive systems,
typically violate these conditions.

Several extensions to Pfair scheduling have been pro-
posed over the past few years. The problem of task
activation in continuous time was discussed by [8],
the problem of sporadic task activation was examined
by [9], and [10] shows a solution for a continuous
execution time model [11] and sporadic task activation.
[12] considers practical properties and analyzes over-
head through scheduling execution times and migra-
tion. Missing examinations are cooperative scheduling
and variable task execution times.

In this paper we present a task system closely resem-
bling embedded systems, like automotive systems, and
apply proportionate fairness scheduling. The resulting
model is called partly proportionate fairness (Partly-
Pfair ).

The remainder of this paper is organized as follows.
In the second chapter we give a brief review to Pfair
Scheduling and PD2 policies, as introduced by [5], [7].

2Optimality, defined by Buttazzo [6]: [...] an algorithm is said to
be optimal if[f] it always finds a feasible schedule whenever there
exists one. [...] A schedule is said to be feasible, if[f] all tasks can be
completed according to a set of specified constraints.

3In contrast to Baruah et. al [5] we use discrete time in terms of
quanted time.
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Chapter 3 describes the multiple time base (MTB) task
system and chapter 4 defines the required restrictions
on MTB task systems to apply Partly-Pfairness. In
Chapter 5 we introduce the concept of partly propor-
tionate fair scheduling (Partly-Pfair ) and a new schedul-
ing algorithm Partly-Pfair-PD2 which is based on Partly-
Pfair and PD2. In Chapter 6 we give a brief introduction
to the simulation-based scheduling analysis. In Chapter
7 we show a performance examination of Partly-Pfair-
PD2. After a consideration of practical benefits of Partly-
Pfair-PD2 in chapter 8, we give a conclusion of our
contribution to dynamic multiprocessor scheduling.

II. Proportionate Fair Scheduling
Proportionate-fair (Pfair ) scheduling was introduced by
Baruah et. al [5] for periodic task systems, as defined
by Liu and Layland [1]. Pfair implies that for each task
Ti processing time is assigned according to its weight
wt(Ti),

wt(Ti) =
Ti.e

Ti.p
(1)

with the worst case execution time4 e and the activation
period p. Anderson et. al [7] proved that the Pfair
scheduling algorithm PD2 is optimal for scheduling a
task set � in a multiprocessor system with m processors
iff formula 2 holds.

n∑
i=1

wt(Ti) ≤ m (2)

Pfair is deduced from the fluid scheduling model. The
fluid schedule fluid(T, t1, t2) represents the processing
time, which has to be assigned to a task Ti during
a time interval between t1 and t2 with regard to its
weight wt(Ti). Figure 1 shows an example with two
tasks T1 and T2. The fluid schedule graph of both
tasks is shown as a thick line.

fluid(Ti, t1, t2) = wt(Ti)(t2 − t1) (t1 < t2)

The theory tells that if each task is executed with
an individual processing speed according to the fluid
schedule, all task deadlines are held. This theorem is
valid as long as system utilization does not exceed m.
Physically, fluid scheduling is not applicable with
current processor architectures and an approximation
is necessary to apply it.

The difference between the received processing time
and the fluid schedule for a Task Ti at time t is defined
as Lag:

Lag(Ti, t) = fluid(Ti, 0, t)− received(Ti, 0, t)

Pfair scheduling is an adjustment of fluid scheduling
theory to physical processors and a discrete time

4Ti.� denotes the task property � of task Ti.

Fig. 1. Pfair Scheduling with Pfair-PD2: Windows w(Tk
i ) of a heavy

task T1 with weight wt(T1) = (6/10) and light task T2 with weight
wt(T2) = (3/7). Subtasks T 1

1 , ..., T
6
1 and T 1

2 , ..., T
3
2 (black) have

to be scheduled in their window to guarantee Pfairness. (Example
shows subtask execution on a uniprocessor.)

model. The resolution of the discrete time is called
quantum. Let Q denote a quantum, then Pfair implies
that the maximal Lag is +Q and the minimal Lag is
−Q.

−Q ≤ Lag(Ti, t) ≤ +Q ∀ Ti ∈ � (3)

In figure 1, the thin lines represent the minimal and
maximal allowed Lag of one quantum and the fluid
schedule.

To adapt periodic task systems to Pfair scheduling, a
task Ti of a periodic task set � is split in a number of
subtasks5 T ki (k = 1, ..., q; q ∈ ℕ). Each T ki has the
execution time of one quantum. Therefore the number
of subtasks q can be calculated from the task execution
time Ti.e by formula 4.

q =
Ti.e

Q
(4)

To fulfill (3), a subtask T ki has to be scheduled in a
time window w(T ki ), starting with the pseudo6-release
r(T ki ) and ending with the pseudo-deadline d(T ki ) (⌊�⌋
is the highest integer, smaller or equal to �; ⌈�⌉ is the
smallest integer, higher or equal to �).

r(T ki ) =

⌊
k − 1

wt(Ti)

⌋
(5)

d(T ki ) =

⌈
k

wt(Ti)

⌉
(6)

We call the smallest time division where a complete
subtask can be executed slot S. Depending on the
weight of a task Ti a window w(T ki ) = {S1, S2, ..., S end}
has a number of slots, available for scheduling subtask

5We denote Tk
i the kth subtask of task Ti.

6The appendix pseudo is used to differ between task and subtask
properties.
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T ki . (We denote
∣∣w(T k)

∣∣ = ∣{S1, S2, ..., S end}∣ as the
quantity of slots of a window.)∣∣w(T k)

∣∣ = ⌈ k

wt(T )

⌉
−
⌊
k − 1

wt(T )

⌋
(7)

Various Pfair algorithms with different scheduling poli-
cies have been published. Anderson and Srinivasan
proved for a system with two processors that schedul-
ing the subtasks according to an Earliest-Pseudo-
Deadline-First scheme EPDF is optimal [13]. For more
general systems with more than two processors, tie-
breaking rules have to be applied for optimality. In this
paper we focus on the algorithm PD2 [7] which is known
to be the most efficient beside PF [5] and PD [14]. It
uses only two additional tie-breaking rules and thus can
be calculated efficiently during runtime.

Algorithm PD2

In the following part we provide a short introduction to
the algorithm PD2. We denote policy as a criteria of
prioritization. The calculation of the PD2 policies are
attached to the appendix.

PD2 schedules with Earliest-Pseudo-Deadline-First
(pseudo-deadline d(T ki ) of the kth subtask of the
ith task) and two additional tie-breaking rules. A
tie-breaking rule is used, whenever a policy is not
sufficient7 for prioritization.
The first tie-breaking rule is called overlapping-bit.
The overlapping-bit is calculated by b(T ki ) with formula
23. Informally, when the current subtask window
overlaps with the window of the sequent subtasks,
the overlapping bit is 1. PD2 prefers subtasks with
overlapping bit equal to 1.
The other tie-breaking rule is called group-deadline.
The group-deadline is calculated by D(T ki ) with
formula 24 and 25. The calculation of D(T ki ) is more
complicated than the calculation of b(T ki ). Informally
the group-deadline concerns the following scenario: A
subtask of a task is not executed in the current slot,
but will be executed in the next slot. Then the group-
deadline is the time, at which one of the following
subtasks has more than one slot in its window left for
scheduling, for the first time. PD2 prefers subtasks
with a higher group-deadline.

Pfair-PD2 is a global algorithm and performs each
discrete time tick a schedule decision. Running tasks
can be preempted by higher priority tasks.

As example we examine three scheduling decisions.
The example in figure 1 illustrates the execution on a

7Not sufficient means that choosing the wrong task for execution,
whenever both tasks have an equal police value, can produce Pfair
non-conform behavior.

uniprocessor8. (The ≻ and ≺ operators are used to
describe the scheduling prioritization: subtask T aX has
to be preferred before subtask T bY when T aX ≻ T bY ; T bY
has to be preferred before subtask T aX when T aX ≺ T bY ;
otherwise the next policy has to be evaluated. If there
is no further policy the selection is arbitrary.)
At timestamp 0 Pfair-PD2 prefers the subtask of task
T1 before the subtask of T2, because d(T 1

1 ) = 2 ≻
d(T 1

2 ) = 3.
At timestamp 3 Pfair-PD2 prefers the subtask of task T2
before the subtask of T1, because d(T 3

1 ) = d(T 2
2 ) = 5

and b(T 3
1 ) = 0 ≺ b(T 2

2 ) = 1.
At timestamp 10, it is arbitrary if the subtask of task
T2 is preferred before the subtask of T1 or otherwise,
because d(T 1

1 ) = d(T 2
2 ) = 5, b(T 1

1 ) = b(T 2
2 ) = 1, and

D(T 1
1 ) = D(T 2

2 ) = 0.

III. Multiple Time Base Task System
The Multiple Time Base (MTB) task system originates
from the field of automotive powertrain applications,
but concerns the general problem of many embedded
systems, to have different tasks activation sources, e.g.
Flexray or CAN.
In a typical automotive powertrain system, two main
sources of task activation exist. The first source is
a periodic trigger, which activates tasks with different
constant recurrences. The other source is the crank
shaft of the engine, which activates tasks depending
on the engine position.
Analyzing such systems with a periodic task system
model [1] is not possible, because the drifting behavior
of the crank shaft activated tasks is not represented.
Analyzing such systems with a sporadic task system
model [15] will produce too pessimistic results, because
the sporadic theorem assumes all tasks to be activated
at the same time, which is not the case.
In MTB task systems, tasks refer to a time base of the
system. All tasks concerning the same time base have
a defined (possibly variable) phasing in their activation
compared to all other tasks referring to this time base.

A task set � = {Ti} of tasks Ti, belonging to the MTB
task system is defined in the following way:

Definition 4.1: A task set � consists of a number of
tasks Ti.

� = {Ti} i = 1, ..., n; n ∈ ℕ

Definition 4.2: A task Ti is defined by a tuple

Ti = (p, o, e, d, bv).

The elements of the tuple are the task properties: mini-
mal task recurrence p, first task instance offset o, worst-
case execution time e, deadline d, and a reference to

8Pfair-PD2 scheduling on multiprocessors is analogous, with the
difference that instead of one task, m tasks are selected for execu-
tion.
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a time base bv.

Definition 4.3: A time base bv is defined by the tuple

bv = (f, ') (v = 1, ..., w; w ∈ ℕ).

The time base properties are the frequency multiplier
f and an angular phase shift '. The variation of both
properties defines the relation between the time base
bv and a unique global time.

Definition 4.4: For the time base properties following
restrictions exist.

f ∈ ℝ≥1

' ∈ ℝ≥0

As task recurrence p and task offset o of task Ti are
related to the time base bv, the task recurrence p′ and
task offset o′ transformed to unique global time can be
calculated by:

p′i = pi ⋅ bv.f + bv.' (8)

o′i = oi ⋅ bv.f + bv.' (9)

By definition, the frequency multiplier f cannot be
smaller then 1, therefore pi is the minimal recurrence
and can be used for analysis purposes. Section VI
shows how this transformation is used to the detect
worst-case response time.

A further extension of MTB task systems is a separation
of task Ti in task sections T ki .

Definition 4.5: A task Ti is split into a number of task
sections T ki (k = 1, ..., q; q ∈ ℕ). According to the task
execution time Ti.e and the task section execution time
T ki .e the relation

Ti.e =

q∑
k=1

T ki .e

exists.
Definition 4.6: All task sections are sequentially de-
pendent. Therefore, task section T bi can not be exe-
cuted before task section T ai has finished its execution,
if a < b and a, b ∈ {1, ..., q}.

IV. Restrictions on MTB Task Systems for
Partly-Pfairness

In this part we examine the required restrictions on
MTB task systems, for the application of Partly-Pfair
scheduling, which will be introduced in the next section.

∙ Sporadic task activation is allowed, but the min-
imal recurrence has to be a multiple of the time
quantum
Tasks are allowed to be activated in continuous time,

as long as the minimal distance between two subse-
quent activations is at least the minimal recurrence.
The minimal recurrence has to be given in discrete
time resolution Q.

Ti.p = zQ , with z ∈ ℕ (10)

As task activation can be sporadic, asynchronous
task activation in continuous time is allowed.

∙ Maximum task section execution time is re-
stricted to discrete time resolution
The maximal task section execution time is limited to
the discrete time resolution Q. (Ti represents the ith

task of a task set � and T ki represents the kth task
section of task Ti.) This results in⌈

T ki .e

Q

⌉
= 1 ∀ T ki ∈ Ti (11)

∙ Explicit deadline is allowed, but has to be a
multiple of the time quantum
The deadline can be given explicitly, but has to be
given in discrete time.

Ti.d = zQ , with z ∈ ℕ (12)

∙ Restriction of task section quantity
The number of task sections multiplied with the dis-
crete time resolution Q is not allowed to be higher
than the minimum of recurrence and deadline. There-
fore, the task section quantity is restricted in the
following way.∣∣{Ti1, ..., Tiq}∣∣ Q ≤ min{Ti.p, Ti.d} (13)

∙ Restriction of maximal system utilization
In a system with m processing resources, where
each resource has a capacity of 1, the maximal
quantized system utilization U ′sys, calculated with the
quantized task weight wt’(Ti), is restricted by

wt’(Ti) =

∣∣{T 1
i , ..., T

k
i

}∣∣ Q
min{Ti.p, Ti.d}

(14)

and

U ′sys =

n∑
i=1

wt’(Ti) ≤ m (15)

using the minimal recurrence Ti.p and the deadline
Ti.d from all tasks Ti.

V. Partly Proportionate Fair Scheduling
In the following section we introduce the concept of
Partly-Pfair scheduling.

Partly-Pfair uses a similar task architecture as Pfair . A
task is split in task sections (at Pfair called subtasks)
and a task section has to be scheduled in a window
with a pseudo-release time and a pseudo-deadline9.

9Therefore all algorithms implement Pfair , e.g. PD2, theoretically
could implement Partly-Pfair .
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Partly-Pfair is based on MTB task systems with
restrictions of formula 10 - 13, 15.

Partly-Pfair calculates the task weight wt’(Ti) by for-
mula 14,
the pseudo-release time by formula 16,

r′(T ki ) =

⌊
k − 1

wt’(Ti)

⌋
(16)

and the pseudo-deadline by formula 17.

d′(T ki ) =

⌈
k

wt’(Ti)

⌉
− 1 (17)

For the calculation of additional tie-breaking rules (e.g.
at PD2: overlapping-bit (formula 23) and group-deadline
(formula 24 & 25)), the following replacement rules have
to be applied (�→ �′ denotes symbol � is replaced by
�′):

wt(Ti)→ wt’(Ti) (18)

r(T ki )→ r′(T ki ) (19)

d(T ki )→ d′(T ki ) (20)

Algorithm Partly-Pfair-PD2

In this section we present the Partly-Pfair scheduling
algorithm Partly-Pfair-PD2. Partly-Pfair-PD2 is based
on PD2 policies.

Partly-Pfair-PD2 schedules task sets, like Pfair-PD2,
with Earliest-Pseudo-Deadline-First and with two
additional tie-breaking rules: overlapping-bit and
group-deadline. The calculation of these policies
is analogous to Pfair-PD2, with the difference in
modifications through formula 18, 19, and 20.

Partly-Pfair-PD2 is a cooperative algorithm, which
means that a task section cannot preempt another
running task section. Another task section can just be
allocated to the processing resource at executing task
sections boundaries. The Partly-Pfair-PD2 scheduling
routine is called, whenever:
∙ a task is activated,
∙ a task section has finished, or
∙ there is a free processing resource and a task

section is pseudo-activated. (This causes non-work-
conserving behavior of Partly-Pfair-PD2.)

As example, now we discuss a Partly-Pfair-PD2 sched-
ule with slightly modified task properties, compared with
the task properties of the Pfair-PD2 example. Shown
in figure 2, both tasks T1 and T2 have task sections
with an execution time ≤ Q. Task T1 is asynchronous

Fig. 2. Partly-Pfair Scheduling with Partly-Pfair-PD2: Windows
w(Tk

i ) of a heavy task wt’(T1) = 6
10

and light task with wt’(T2) = 3
7

.
Task sections T 1

1 , ..., T
6
1 and T 1

2 , ..., T
3
2 . A star signals a Partly-

Pfair-PD2 scheduler call. (Example shows subtask execution on a
uniprocessor.)

activated. The execution is also on an uniprocessor10.
At timestamp 0 only task section T 1

2 is pseudo-activated
and therefore is executed.
Between timestamp 0 and 1, after task section T 1

2 has
finished, T 1

1 is activated and task section T 2
2 hasn’t

reached its pseudo-activation. Therefore task section
T 1
1 is executed.

A scheduler call occurs each time when a task section
has finished. When there is no pseudo-activated task
section available for execution (e.g. at time 3), an
additional scheduler call is set at the next pseudo-
activation time.

VI. Simulation-based Schedulability Estimation

This section provides overview of the schedulability
estimation methodology of MTB task sets, scheduled
by Partly-Pfair-PD2.

Simulation Approach

It is common knowledge that schedulability analysis
of dynamically allocated tasks with dynamic priorities
in multiprocessor systems is infeasible with current
general analysis techniques. Problems which occur
only at multiprocessors e.g. Richard’s anomaly [16],
cause formal analysis to breakdown.
As the task system of Partly-Pfair-PD2 is much more
complex than the task system of Pfair-PD2 (continuous
time, sporadic activation, variable task (section)
execution time), we use a discrete event-based
simulation method for the performance examination
[17].

10Equal to Pfair-PD2, Partly-Pfair-PD2 scheduling on multiproces-
sors is analogous to scheduling uniprocessors, with the difference
that instead of one task, m tasks are selected for execution.
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The discrete event-based simulation is based on a
model of the hardware and software characteristics.
Comparable to the System-C based approach of Samii
et. al [18], we vary simulation parameters to estimate
the worst case response time.
Because the execution time is constant at MTB task
systems, only the activation relation of the tasks differs.
At MTB task systems the task activation frequency
differs because of the time base properties. We vary
them within their valid range so that the simulation
covers cases approximated to worst case scenarios
and thus yields the largest relative response times for
all tasks.

During the simulated time, a task Ti generates a num-
ber of jobs (i.e. instances) Ti,j and its state changes
occur through task activation, suspension, resumption,
and termination.
As a result of the simulation, a trace is generated
containing a number of these state transitions of the
system. König et. al [19] presented, how the real-
time metrics like e.g. lateness l(Ti) as introduced by
Buttazzo in [6] can be used to analyze the trace of a
simulation.
The lateness l(Ti,j) of the jth job of task Ti is calculated
by

l(Ti,j) = di,j − fi,j

l(Ti,j) is equivalent to the time left until reaching the
deadline. The lateness is negative when the finishing
time fi,j is smaller than the absolute deadline di,j , i.e.
if the calculation is finished in time.
To determine the task-deadline compliance for a com-
plete task set we identify the job which yields the largest
lateness for each task. Additionally we normalize that
lateness li,j with the relative deadline Di of the task Ti.
We denote the maximum of that value of all tasks in a
task set � as maximal normed lateness mNL (�).

mNL(�) = max
Ti∈�

⎛⎝ max
Ti,j∈Ti

(li,j)

Di

⎞⎠ (21)

To analysis Partly-Pfair-PD2, we pseudo-randomly gen-
erate task sets �z and examine their maximal normed
lateness mNL(�z). As the stochastic parameters for the
pseudo-random generation are based on a stochastic
task set description, we call this Monte-Carlo approach
[20], [21].

Technical Experiment Setup

As the Monte-Carlo approach combined with the sim-
ulative study of the task sets is quite calculation effort
intensive, we developed a C++ based simulation en-
vironment, which is distributed via a cluster computing
approach. The Condor Cluster Computing network [22]
allows us to execute multiple instances of our simulation
and thus simulation of different task sets in parallel.

VII. Performance Examination of Partly-Pfair-PD2

In order to examine the performance of Partly-Pfair-
PD2 we pseudo-randomly generated 500000 task sets
�z (z = 1, ..., 500000). All �z were simulated using the
approach described in the previous section. Each task
set was analyzed on a quad-core SMP multiprocessor
and Partly-Pfair-PD2 scheduling algorithm.
The pseudo-random task set generation process is
based on a stochastic task set description, similar to
the manner it was introduced in [20].
The stochastic task set is deduced from automotive
powertrain systems. We create the task sets {�z} in
the following way.

First, the quantity of tasks nz of task set �z is drawn
from a discrete uniform distribution (nmin = 20, nmax =
30). Afterwards, for each task Ti ∈ � the recurrence11

is drawn from an equally distributed list of recurrences
{2.5, 5.0, 7.5, 10.0, 20.0, 50.0} and the utilization wt(Ti) is
drawn from a Weibull distribution (wmin = 0.05, w =
0.15, wmax = 0.51, prest@wmin

= 10%). For all tasks,
the deadline is equal to the recurrence. The quantum
Q is set to 0.25. For the task section execution time,
we randomly generate execution times (also from a
Weibull distribution (wmin = 0.125, w = 0.24, wmax =
0.25, prest@wmin

= 10%) and assign the generated task
sections T k (with task section execution time T k.e) to
a task Ti as long as the condition

q∑
k=0

T ki .e ≤ Ti.p ⋅ wt(Ti)

is fulfilled. The task offset o is drawn from a uniform
distribution (umin = 0.0;umax = 0.05). Finally, each task
is assigned to a time base b.v according to a uniform
distribution {1, 2, 3, 4}.

Figure 3 shows the result of all randomly generated and
simulated task sets.12

One point represents the maximum normed lateness
mNL(�z) (formula 21) of a task set �z. The line shows
the quantity of the generated task sets as a function of
system utilization Usys(�z) calculated by

Usys(�z) =

nz∑
i=1

Ti.e

Ti.p
. (22)

For the generated and simulated task sets, the only
deadline violation occurs at a system utilization of
3.995. The mNL value of this task set is +0.00005,
which equates a deadline violation of 0.005 %. The
mNL value results from a task with 50 ms recurrence.

11All further times are in ms.
12Total CPU time for generation ∼one year. (But, with the condor

cluster network and the computer pools of our university we have a
speedup of 150.)
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Fig. 3. 500000 randomly generated and simulated task sets. The
simulated hardware is a quadcore-processor (m = 4) with the
algorithm Partly-Pfair-PD2. Each point of mNL equates the worst
relative task lateness of one task set. A negative mNL implies all task-
deadlines of a task set are meet. The line represents the quantity of
generated task sets as a function of system utilization.

VIII. Application Benefits and Practical
Consideration of Partly-Pfair-PD2 for Embedded

(Automotive) Systems
As discussed, many dynamic multiprocessor schedul-
ing algorithms that have been proven by formal meth-
ods to be optimal, can not be applied in embedded
systems due to their restrictive properties. This sec-
tion gives requirements of real systems, which are
fulfilled by Partly-Pfair-PD2 but also indicates some
areas where still additional extensions of the algorithm
are needed.

Fulfilled Requirements

∙ As it was shown in Section V, Partly-Pfair-PD2 is
a cooperative scheduling algorithm. This is not a
hard requirement in automotive systems, but has
some functional and efficiency benefits, e.g. a lower
overhead for stack migration at a defined points of
preemption.

∙ The restrictions of the minimal recurrence and dead-
line to discrete time is manageable. Otherwise both
have to be rounded to the next lower multiple of the
discrete time resolution, or the time resolution has to
be increased by using a smaller quantum.

∙ The restriction to the maximum task section exe-
cution time is weak because similar requirements
are used to manage cooperative behavior in existing
systems. However, the maximal execution time of
task sections has to be followed exactly.

Further Work
The algorithm discussed here does not consider sched-
uler nor migration overhead. Scheduler calls can occur
quite often, so possible improvements should reduce
the number of scheduler calls. Depending on the fea-
tures of the underlying system hardware, migration is
more or less costly. It is therefore desirable to minimize
the number of migrations necessary for scheduling.

IX. Conclusion

The restrictions of the Pfair approach are often too
restrictive for multiprocessor control devices that have
to execute tasks on external triggers, have variable task
execution time, and use cooperative task suspension
for efficiency reasons. These conditions make the ap-
plication of algorithms like Pfair-PD2 impossible for such
systems.
In this paper we introduced Partly-Pfair-PD2, a dynamic
multiprocessor scheduling algorithm based on Pfair-
PD2. It supports scheduling of multiple time base (MTB)
task systems which are a more realistic description of
many embedded systems, like for example automotive
powertrain systems or systems with Flexray and CAN
bus systems.
With a simulation-based schedulability examination
methodology, we showed for randomly generated task
sets that Partly-Pfair-PD2 allows to use multiprocessors
in a highly efficient way, especially for applications with
complex timing requirements.
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X. Appendix
A. Description of PD2 Policies

In the following part we describe the calculation of PD2

policies.
The ≻ and ≺ operators are used to describe the
scheduling prioritization: subtask T aX has to be pre-
ferred before subtask T bY when T aX ≻ T bY ; T bY has to be
preferred before subtask T aX when T aX ≺ T bY ; otherwise
the next policy has to be evaluated. If there is no further
policy the selection is arbitrary.

Policy 1 (Pseudo-Deadline):
T aX ≻ T bY if d(T aX) < d(T bY ); T

a
X ≺ T bY if d(T aX) > d(T bY ).

d(T ki ) equates the pseudo-deadline, calculated by for-
mula 6.
Figure 1 shows the windows for the subtasks of two
task T1 and T2 with a weight of wt(T1) = 6/10 and
wt(T2) = 3/7. The pseudo-deadlines of the subtasks

T 1
1 , ..., T

6
1 are d(T 1

1 ) = 2, d(T 2
1 ) = 4, d(T 3

1 ) =
5, d(T 4

1 ) = 7, d(T 5
1 ) = 9, and d(T 6

1 ) = 10.

Policy 2 (Overlapping-Bit):
T aX ≻ T bY if b(T aX) > b(T bY ); T

a
X ≺ T bY if b(T aX) < b(T bY ).

The overlapping bit function b(T ki ) denotes the overlap-
ping of two successive subtask windows T ki and T k+1

i

of a Task Ti.

b(T ki ) =

{
1 , if d(T ki ) > r(T k+1

i )

0 , if d(T ki ) ≤ r(T
k+1
i )

(23)

PD2 prefers subtasks with overlapping windows, be-
cause delaying such a subtask means that the suc-
cessive subtask has a smaller window to be sched-
uled. In figure 1 the overlapping-bits of the subtasks{
T 1
1 , ..., T

6
1

}
are b(T 1

1 ) = 1, b(T 2
1 ) = 1, b(T 3

1 ) =
0, b(T 4

1 ) = 1, b(T 5
1 ) = 1, and b(T 6

1 ) = 0.

Policy 3 (Group-Deadline):
T aX ≻ T bY if D(T aX) > D(T bY ); T

a
X ≺ T bY if D(T aX) <

D(T bY ).
The group-deadline function D(T ki ) concerns the effect
of schedule decision of a subtask for its subsequent
subtasks. Let T ci , ..., T

d
i be a sequence of subtasks of

a heavy task Ti (heavy means wt(Ti) ≥ 0.5) in the way
that c < k ≤ d with a window of subtask T ki either
of length

∣∣w(T k+1
i )

∣∣ = 3 (e.g. figure 1, subtask T k1 ,
k = 1) or

∣∣w(T k+1
i )

∣∣ = 2 ∧ b(T ki ) = 0 (e.g. figure
1, subtask T k1 , k = 3). Then scheduling subtask T li
c < l ≤ d in the last slot of its window w(T li ) results in
scheduling all subsequent subtasks in there last slot,
excepted subtask T k+1

i because there are 2 slots left.
Therefore the sequence T ci , ..., T

d
i can be seen as one

subtask-unit where scheduling one subtask in the last
slot results in scheduling each subsequent subtask in
its last slot. Otherwise pseudo-deadlines are missed.
The group-deadline is the last time slot of this subtask-
unit at time d(T ki ) + 1. Formally, the group-deadline
D(T ki ) can be calculated for heavy tasks by (24) [23].

D(T ki ) =

⎡⎢⎢⎢
⌈⌈

k
wt(Ti)

⌉
⋅ (1− wt(Ti))

⌉
1− wt(Ti)

⎤⎥⎥⎥ if wt(Ti) ≥ 0.5

(24)
Furthermore Srinivasan [23] proved for light tasks
(wt(Ti) < 0.5) the group-deadline is 0 (formula 25)
∀ T ki ∈ Ti.

D(T ki ) = 0 if wt(Ti) < 0.5 (25)

In figure 1 the group-deadlines of T ′1s subtasks are
D(T 1

i ) = 3, D(T 2
i ) = 5, D(T 3

i ) = 5, D(T 4
i ) =

8, D(T 5
i ) = 10, and D(T 6

i ) = 10. At task T2 each
window has at least 2 slots left, when the precedent
subtask is scheduled in the last slot.


